Data Structures

Page 1 of 3
Spring 2010

Problem 14: Waiting Lines
Objectives: The student will write a program that uses the Queue data structure to simulate arrival/departure behavior. You must use your Queue class for this program.
Program Description:

It is often easier to simulate a situation by computer than it is to devise the mathematical formulas to compute what you want to know. For this problem you want to know the maximum length of a line (queue) in a situation where people line up to be served on a first-come-first serve basis and you know when they arrive and how long each person needs to be served after reaching the front. We will include the person in front as being in the line until they have been served and removed. You will input a series of non-negative integers that represent moments in time at equal increments. At a moment in time either nobody arrives, signified by a 0, or one person arrives, signified by the time that person will require after reaching the front of the line. For example, the following represents 15 units of time (0…14) in which 5 people arrive at times 0, 2, 7, 8, and 9, and each of them requires 3 units of time to be serviced:

3 0 3 0 0 0 0 3 3 3 0 0 0 0 0

Simulate this with a queue in which at each moment in time you add the new arrival (if there is one) and remove the front person if they have been there long enough. The line length is determined after doing this. In the above example the line lengths would be:

1 1 2 1 1 1 0 1 2 3 2 2 2 1 1

The maximum line length is 3, which is what your program should print in this case.
Input:

There will be multiple cases to be considered, one per line, with each line containing one or more non-negative integers separated by spaces. After the last case is a line with -1 for end of data (do not treat this terminating line as a case for printing anything).

Output:

For each case print the maximum length of the line (queue), single spaced.
Sample Input
Expected Output

Problem 15: Average Wait Time
Objectives: The student will write a program that uses the Queue data structure to simulate arrival/departure behavior. You must use your Queue class for this program.

Program Description:

This problem is a variation of the previous one, but instead of printing the maximum length of the line you are to compute the average wait time for the people in the line rounded to one decimal place. DO NOT include the service time in this calculation, that is, how long the person is serviced at the front of the line. For example, the following represents 15 units of time (0…14) in which 5 people arrive at times 0, 2, 7, 8, and 9, and each of them requires 3 units of time to be serviced:

3 0 3 0 0 0 0 3 3 3 0 0 0 0 0

Of these 5 people, their individual wait times are 0, 1, 0, 2, and 4, respectively. Therefore the average wait time is 1.4 in this case. As another example, suppose you have 7 people each requiring 4 units of time coming 1 unit of time apart:

4 4 4 4 4 4 4

The wait times for these 7 people, will be 0, 3, 6, 9, 12, 15, and 18, respectively, and the average wait time is 9.0.

Input:

There will be multiple cases to be considered, one per line, with each line containing one or more non-negative integers separated by spaces. After the last case is a line with -1 for end of data (do not treat this terminating line as a case for printing anything).

Output:

For each case print the average wait time, single spaced, rounded to one decimal place (zero should be printed as 0.0 as shown below).
Sample Input
Expected Output

Problem 16: Balanced Parentheses

Objectives: The student will write a program that uses a stack.

Program Description:

Section 2.3 shows how to implement a simple balanced Parentheses checker using a stack. Write a program to check expressions that may include parentheses "()", square brackets "[]", and curly braces "{ }" in any combination. Your program will need to report on whether a string is balanced, and the maximal size of the stack needed.

Specifications: The program MUST contain the following elements in order to be counted as correct:
1. A class definition for Stack() with methods __init__, push, pop, peek, isEmpty, and size.

2. A function named balance(s) that returns a pair of values. The first value of the pair is True if s is balanced and False otherwise. The second value of the pair is the maximal stack size (the largest size it reached— note from the textbook that we don’t push a closing parenthesis, bracket, or brace onto the stack).

Input:

Each line of input will be an expression, containing parentheses, brackets, and/or braces in any combination. Count the expressions starting with 1.
Output:

Output each case single spaced and with the case number exactly as shown below. Tell whether the input expression was balanced or not, and give the maximal size of the stack used in the evaluation. Spacing, punctuation, and capitalization should be exactly as shown below (for instance, there is only one space following the colon, first period, before/after the = symbol, and between words).
Sample Input
Expected Output

s[1:2] + s[5:]

s[1:2)

a+b

(a + b))

[a

{[(22 + 33)*5]+(1-3)}/{a*b}

{{[[3])}

<blank line ends input>

1: Balanced. Maximum stack size = 1.

2: Not balanced.

3: Balanced. Maximum stack size = 0.

4: Not balanced.

5: Not balanced.

6: Balanced. Maximum stack size = 3.

7: Not balanced.

3 0 3 0 0 0 0 3 3 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

 25

0 3 0 0 3 0 0 3 0 0

4 4 4 4 4 4 4

8 1 5 1 1 1 0 0 0 1 1 1 0 0 0

-1

1.4

0.0

0.0

0.0

9.0

7.9

3

0

1

1

6

7

3 0 3 0 0 0 0 3 3 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

 25

0 3 0 0 3 0 0 3 0 0

4 4 4 4 4 4 4

8 1 5 1 1 1 0 0 0 1 1 1 0 0 0

-1

