Data Structures
Program 1
Page 1 

Spring 2010

Final Patterns

Objectives:  The student will write a program with the following elements:

1. Indexing of strings

2. `Slicing of strings

For example, the string 'xxabcabcabc' can be written as a stem 'xx' followed by 3 copies of the pattern 'abc'.  A stem could be empty, as in the case, 'abcabcabc', which consists entirely of the 3 copies of the pattern 'abc'.  On the other hand, '101010101'  has no copies of 'abc', so it is all stem.

Your job is to write a program that will input a string and a pattern, and rewrite the string in the form <stem> + n*<pattern>, where stem does not end in the pattern. 

Input:

The input consists of several cases, one case per line, followed by a blank line.  Each case has a string and a pattern separated by one or more blanks.  The first string has a (possibly empty) nonrepeated part followed by zero or more repetitions of the second string.  

Output:

Output one case per line.  Print the case number starting from 1.  There should be a blank line after each case.  Rewrite the string as a stem which does not end in the pattern, followed by the number n of repetitions of the pattern.  Use the following format:

Case <case number>: '<string>' = '<stem>' + <n>*'<pattern>'

Sample Input
Expected Output

Find and Replace

Objectives:  The student will write a program with the following elements:

1. String manipulation with slicing

Every word processor has a "Find and Replace" capability in which it is required to find all instances of a given string and replace them with a new string.  Your job is to write a user defined function findAndReplace(s,target,replacement) that will return a string that is constructed from s, but with every instance of target replaced by the replacement string.  Your main program should call findAndReplace in order to do the following task.

Input:

Input will consist of several cases, with one case per line.  Each case will have three strings separated by one or more spaces. A blank line terminates the input.  

Output:  

Output one case per line.  Each case is followed by a blank line.  Number the cases starting at 1.  The line of output is to include the case number, the orignal string and the string after replacement using the format 

Case <case>: <original string> –> <string after replacement>

Sample Input
Expected Output

Top Ten Words
Objectives:  The student will write a program using a dictionary.

What are the most frequently used words in the Declaration of Independence, the Constitution, or the Bible?  Let's write a program that can answer such  a question!

Program Specifications:

The program will use a dictionary to count the words of the input text.  

Input:

Any text with at least 10 distinct words can serve as the input. Words are strings of contiguous letters.  Capitals are ignored.  Apostrophes are counted as part of the word, so that "Nature" and "Nature's" are distinct.  Any other punctuation—including hyphens, separate words.  Hint:  If you replace every character that is not part of a word with a blank, then you can separate the words using split().

Output:

Output the ten most frequently used words in the text along with their frequencies.  The list is to be in decreasing order of frequency.  In case of ties, list the words in alphabetical order.  In case of a tie for 10th place, output the words in alphabetical order until ten words total have been output.  There are no blank lines, and no trailing spaces. 

Sample Input
Expected Output


Expected Output

Pig Latin Generator

Objectives:  The student will write a program with the following elements:

1. String manipulation including slicing

2. User defined function with string parameter

Some people find it amusing to alter their mode of speaking so that it sounds like a foreign language.  Pig Latin is such a system.  The rules for generating a Pig Latin word from its English counterpart are simple:

1. If the word begins with a vowel (a, e, i, o, u), append 'way' to the end of the word.

2. Otherwise, move all consonants before the first vowel to the end of the word and append 'ay'.  (Exception: Treat an initial 'qu' as a consonant: quest –> estquay)

In order to write Pig Latin, we also need to take care of capitalization and punctuation in sentences, so we add these rules:

3. If the English is capitalized, the Pig Latin is capitalized: Pig –> Igpay

4. Final punctuation in English goes to the end of the Pig Latin:  "My!" –>"Ymay!"

Program Specification

The program will contain a function pigLatin(word) that will take a single word (no white space) and output its Pig Latin counterpart.

Input

The input will be one or more lines of text followed by a single blank line.  

Output

The output will be one or more lines of Pig Latin text.

Sample Input


Expected Output














xxabcabcabc abc

abcabcabc abc

abcabca   abc





Case 1:  'xxabcabcabc' = 'xx' + 3*'abc'



Case 2:  'abcabcabc' = '' + 3*'abc'



Case 3:  'abcabca' = 'abcabca' + 0*'abc'



1010101   01   *

111       1    11

ababaabb  ab   b



(blank line)



Case 1:  1010101  –> 1***



Case 2:  111  –> 111111



Case 3:  ababaabb –> bbabb







Ifway ouyay ancay eakspay Igpay Atinlay, isthay illway ebay anway easyway assignmentway.  Ifway otnay, it'sway illstay unfay.

Isthay isway away ickquay ewnay inelay.



If you can speak Pig Latin, this will be an easy assignment.  If not, it's still fun.

This is a quick new line.

























Top Ten Words

Frequency Word

    9     the

    5     of

    5     to

    3     and

    3     them

    3     which

    1     a

    1     among







When in the Course of human events it becomes necessary for one people to dissolve the political bands which have connected them with another and to assume among the powers of the earth, the separate and equal station to which the Laws of Nature and of Nature's God entitle them, a decent respect to the opinions of mankind requires that they should declare the causes which impel them to the separation.





