In exercises requiring estimations or approximations, your answers may vary slightly from the answers given here.

2. (a) The point \((-4, -2)\) is on the graph of \(f\), so \(f(-4) = -2\). The point \((3, 4)\) is on the graph of \(g\), so \(g(3) = 4\).
(b) We are looking for the values of \(x\) for which the \(y\)-values are equal. The \(y\)-values for \(f\) and \(g\) are equal at the points \((-2, 1)\) and \((2, 2)\), so the desired values of \(x\) are \(-2\) and \(2\).
(c) \(f(x) = -1\) is equivalent to \(y = -1\). When \(y = -1\), we have \(x = -3\) and \(x = 4\).
(d) As \(x\) increases from \(0\) to \(4\), \(y\) decreases from \(3\) to \(-1\). Thus, \(f\) is decreasing on the interval \([0, 4]\).
(e) The domain of \(f\) consists of all \(x\)-values on the graph of \(f\). For this function, the domain is \(-4 \leq x \leq 4\), or \([-4, 4]\). The range of \(f\) consists of all \(y\)-values on the graph of \(f\). For this function, the range is \(-2 \leq y \leq 3\), or \([-2, 3]\).
(f) The domain of \(g\) is \([-4, 3]\) and the range is \([0.5, 4]\).

11. The water will cool down almost to freezing as the ice melts. Then, when the ice has melted, the water will slowly warm up to room temperature.

\[\text{Graph of a function} \]

19. (a) From the graph, we estimate the number of cell-phone subscribers worldwide to be about 92 million in 1995 and 485 million in 1999.
(b) From the graph, we estimate the number of cell-phone subscribers worldwide to be about 92 million in 1995 and 485 million in 1999.

28. \(f(x) = \frac{5x + 4}{x^2 + 3x + 2}\) is defined for all \(x\) except when \(0 = x^2 + 3x + 2 \iff 0 = (x + 2)(x + 1) \iff x = -2\) or \(-1\), so the domain is \(\{x \in \mathbb{R} \mid x \neq -2, -1\} = (-\infty, -2) \cup (-2, -1) \cup (-1, \infty)\).
41. \(f(x) = \begin{cases} x + 2 & \text{if } x < 0 \\ 1 - x & \text{if } x \geq 0 \end{cases} \)

The domain is \(\mathbb{R} \).

56. The area of the window is \(A = xh + \frac{1}{2} \pi \left(\frac{1}{2} x \right)^2 = xh + \frac{\pi x^2}{8} \), where \(h \) is the height of the rectangular portion of the window.

The perimeter is \(P = 2h + x + \frac{1}{2} \pi x = 30 \) \(\Rightarrow \) \(2h = 30 - x - \frac{1}{2} \pi x \) \(\Rightarrow \) \(h = \frac{1}{4} (60 - 2x - \pi x) \). Thus,

\[
A(x) = x \left(\frac{60 - 2x - \pi x}{4} + \frac{\pi x^2}{8} \right) = 15x - \frac{1}{2} \pi x^2 + \frac{\pi}{8} x^2 = 15x - \frac{4}{8} x^2 - \frac{\pi}{8} x^2 = 15x - x^2 \left(\frac{\pi + 4}{8} \right).
\]

Since the lengths \(x \) and \(h \) must be positive quantities, we have \(x > 0 \) and \(h > 0 \). For \(h > 0 \), we have \(2h > 0 \) \(\Leftrightarrow \) \(30 - x - \frac{1}{2} \pi x > 0 \) \(\Leftrightarrow \) \(60 > 2x + \pi x \) \(\Leftrightarrow \) \(x < \frac{60}{2 + \pi} \). Hence, the domain of \(A \) is \(0 < x < \frac{60}{2 + \pi} \).

62. \(f \) is not an even function since it is not symmetric with respect to the \(y \)-axis. \(f \) is not an odd function since it is not symmetric about the origin. Hence, \(f \) is neither even nor odd. \(g \) is an even function because its graph is symmetric with respect to the \(y \)-axis.

65. \(f(x) = \frac{x}{x^2 + 1} \).

\[
f(-x) = \frac{-x}{(-x)^2 + 1} = \frac{-x}{x^2 + 1} = -\frac{x}{x^2 + 1} = -f(x).
\]

So \(f \) is an odd function.
66. \[f(x) = \frac{x^2}{x^4 + 1}. \]

\[f(-x) = \frac{(-x)^2}{(-x)^4 + 1} = \frac{x^2}{x^4 + 1} = f(x). \]

So \(f \) is an even function.